

Техническое описание сетевого контроллера БПОС101-0.25М и БПОС101-0.25М-Офис системы охранно-пожарной сигнализации и контроля доступа AS101 (ППКОП AS101)

серия МИНИ

ЮКСБ.4372.101.09-5 ТО Ред. от 12.03.13

Москва 2013

1

СОДЕРЖАНИЕ

	стр
1. Назначение	2
2. Характеристики	2
3. Устройство и работа	3
4. Размещение и монтаж	7
5. Меры безопасности	9
6. Информация для заказа	9

1. Назначение

- 1.1. Сетевые контроллеры **БПОС101-0.25М** и **БПОС101-0.25М-Офис** (далее, где не оговорено особо, **БПОС101-0.25х**) входят в состав интегрированной системы охранно-пожарной сигнализации и контроля доступа AS101 (ППКОП AS101) и предназначены для:
 - сбора информации от периферийных устройств (извещателей, считывателей и т.п),
 - принятия решений,
 - выдачи команд управления,
 - обмена информацией с компьютерами пультов управления системы по сети Fast Ethernet.

Сетевые контроллеры БПОС101-0.25М-Офис являются упрощенной версией БПОС101-0.25М, используются только в составе комплекта оборудования «Офис» и устанавливаются в комнате охраны. Контроллеры БПОС101-0.25М оборудованы датчиком вскрытия, имеют входы для подключения статусных датчиков источника бесперебойного питания и могут быть установлены в любом месте защищаемого объекта.

Сетевые контроллеры взаимодействуют с периферийными устройствами через адресные блоки уплотнения (БУ) - концентраторы. Обмен данными между БУ и **БПОС101-0.25х** осуществляется по двухпроводной линии связи со специализированным протоколом AS101. Контроллеры содержат базы данных карточек пользователей системы контроля доступа, конфигурации оборудования и могут работать автономно.

- 1.2. К двухпроводной линии связи БПОС101-0.25х можно подключать
 - выносные пульты управления (ВПУ),
 - блоки уплотнения (БУ) любых типов,
 - адресные устройства подсистемы ParkManager

при условии, что суммарное их число не более 8 (или 7 – при использовании внутреннего виртуального БУ в **БПОС101-0.25M**).

- 1.3. Сетевые контроллеры рассчитаны на непрерывный круглосуточный режим работы.
- 1.4. Конструкция сетевого контроллера не предусматривает использование его в условиях воздействия агрессивных сред, пыли, а также в пожароопасных помещениях.
- 1.5. Условия эксплуатации сетевого контроллера:
 - рабочая температура окружающей среды от 274 до 313K (от +1 до +40 $\,^{\circ}$ C);
 - относительная влажность до 80% при 298*K* (+25 °C).

2. Характеристики

- 2.1. Питание сетевого контроллера осуществляется от источника постоянного тока (например, СКАТ-1200). Постоянное напряжение питания на входе от 10В до 28В. Максимальный потребляемый ток не более
- 230мА при напряжении питания 12В,
- 170мА при напряжении питания 24В.

- 2.2. Максимальное количество подключаемых блоков уплотнения 8. Это количество ограничено максимально допустимым током в линии связи 40мА.
- 2.3. Максимальная длина линии связи (длина провода от сетевого контроллера до самого удаленного блока уплотнения) **100м**.
- 2.4. Максимальная длина кабеля Fast Ethernet 85м.
- 2.5. Параметры встроенного полупроводникового реле (только для БПОС101-0.25М):
 - коммутация постоянного или переменного тока
 - максимальный коммутируемый ток 100мА (амплитуда),
 - максимальное коммутируемое напряжения 60В (амплитуда).

Внимание. При коммутации индуктивной нагрузки следует использовать защитный диод.

3. Устройство и работа

3.1. Расположение выводов БПОС101-0.25х представлено на рис.3.1.

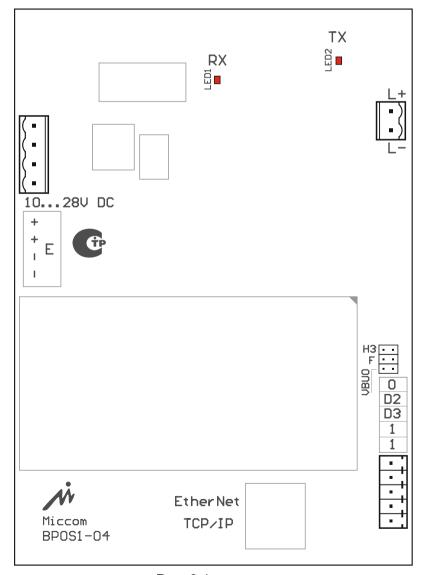


Рис. 3.1.

Назначение разъемов:

+ *E*, - *E* - входы для подключения линии питания (соответственно + и -);

+ L, - L - выходы для подключения линии связи (соответственно + и -);

EtherNet - подключение к сети Fast Ethernet (RJ-45).

(только для БПОС101-0.25M)

о - общий вывод (минус);

- вход для подключения внешнего датчика («сухой контакт» или «открытый коллектор»), например, датчика перехода на резервное питание;

- вход для подключения внешнего датчика («сухой контакт» или «открытый коллектор»), например, датчика глубокого разряда аккумулятора источника питания.

1 1 - выходные контакты встроенного оптоэлектронного реле;

Назначение переключателей/джамперов (*только для* БПОС101-0.25M):

VBU0	• •	джампер одет	включено виртуальное БУ с номером 1 (адресом 0)
	0	джампер снят	отключено виртуальное БУ
Н3	• •	джампер одет	контакты реле «нормально замкнутые»
	00	джампер снят	контакты реле «нормально разомкнутые»

3.2. **БПОС101-0.25М** позволяет опрашивать по двухпроводной линии связи до 8 адресных устройств (номера 1...8, адреса 0...7), если джампер **VBU0** снят.

Если джампер **VBU0** одет, сетевой контроллер переходит в режим эмуляции внутреннего БУ с номером 1 (адресом 0). Ответы подключенного к линии связи БУ с таким же адресом игнорируются. В таком случае сетевой контроллер позволяет опрашивать до 7 адресных устройств, подключенных к линии связи (номера 2...8, адреса 1...7) и одно внутреннее БУ.

Внутреннее виртуальное БУ позволяет

- использовать в системе встроенный в сетевой контроллер датчик вскрытия
- подключить датчик перехода на резервное питание внешнего источника питания сетевого контроллера
- подключить датчик глубокого разряда аккумулятора внешнего источника питания сетевого контроллера
- использовать одно встроенное в сетевой контроллер реле
- 3.3. При заведении конфигурации следует учитывать:
 - тип виртуального БУ БУ840
 - номер виртуального БУ 1
 - датчик вскрытия подключен ко входу 1 виртуального БУ
 - датчик **D2** подключен ко входу **2** виртуального БУ
 - датчик **D3** подключен ко входу **3** виртуального БУ

- реле подключено к выходу 1 виртуального БУ
- 3.4. Схема подключение датчиков источника питания приведена на рис. 3.2

Входы D2(D3) и 0 замкнуты — **Норма**Входы D2(D3) и 0 разомкнуты - **Сработка**

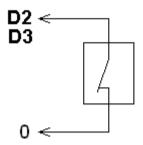
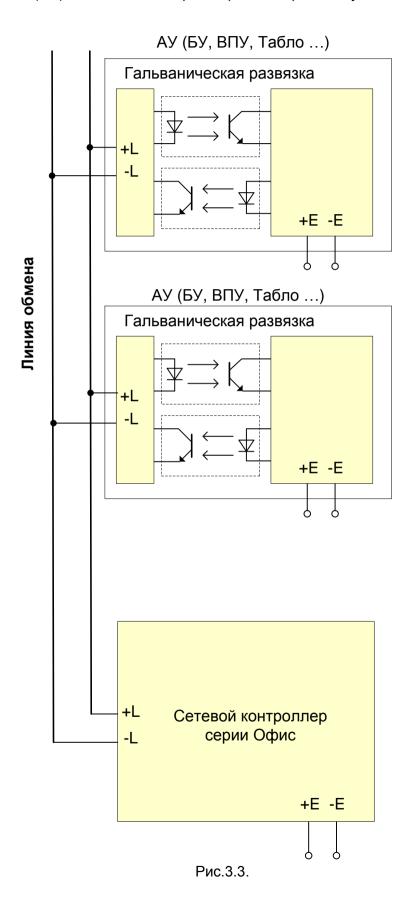


Рис.3.2.

Например, источники бесперебойного питания серии СКАТ рекомендуется использовать совместно с релейным модулем контроля РМ-02Р производства ПО «Бастион», в котором присутствуют контакты реле «Переход на резервное питание» и «Глубокий разряд».

3.5. Переключение режима работы реле выполняется джампером **H3.** Если джампер снят, то тип реле «нормально разомкнутое». Это значит, что при выполнении условий реакции на состояние системы контакты реле замыкаются. Контакты реле разомкнуты в противном случае.


Если джампер **H3** одет, то тип реле «нормально замкнутое». Это значит, что при выполнении условий реакции на состояние системы контакты реле размыкаются. Контакты реле замыкнуты в противном случае.

Важно! Тип встроенного реле — «нормально разомкнутое». Изменение типа реле на «нормально замкнутое» эмулируется подачей управляющего сигнала. Это значит, что при отсутствие питания на сетевом контроллере управляющий сигнал отсутствует тоже и контакты реле будут разомкнуты даже при замкнутом джампере НЗ. Такое поведение отличается от классических реле, в которых нормально замкнутые контакты не меняют состояние в зависимости от наличия напряжения питания устройства.

- 3.6. Сетевой контроллер поддерживает все протоколы AS101: «быстрые» Fast300 или Fast500 и «медленные» Normal или SU. Контроллер использует «защищенные» модификации протоколов.
- 3.7. Одним из упрощений контроллеров серии **БПОС101-0.25х** является отсутствие гальванической развязки между сетевым контроллером и линией обмена. Но все адресные устройства системы AS101 (БУ, ВПУ) имеют гальваническую развязку между линией обмена и остальными частями схемы (рис 3.3). Благодаря этой развязке повышается помехозащищенность системы.

Структурная схема взаимодействия адресных устройств (АУ) с сетевым контроллером по протоколу AS101

3.7. Внешний вид и основные размеры корпуса **БПОС101-0.25х** приведены на рис.3.4 и 3.5.

Рис.3.4.

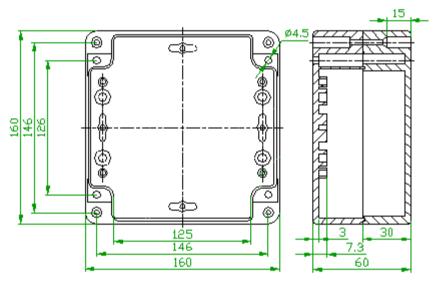


Рис.3.5.

4. Размещение и монтаж

4.1. Контроллер устанавливается на стенах, за подвесными потолками или на других конструкциях охраняемого помещения в местах, защищенных от воздействия атмосферных осадков, механических повреждений и доступа посторонних лиц.

Важно! Недопустимо устанавливать контроллер на потолке или иных конструкциях крышкой вниз из-за ухудшения условий охлаждения процессора и возможности его перегрева.

4.2. Монтаж контроллера и соединительных линий производится в соответствии с РД.78.145-92 "Правила производства и приемки работ. Установки охранной, пожарной и охранно-пожарной сигнализации".

4.3. Схема подключения адресных блоков уплотнения (БУ) к сетевому контроллеру может быть любой: «шина». «звезда» или их комбинация (древовидная структура).

При составлении схемы разводки соединительных линий по зданию необходимо провести расчет схемы разводки с учетом расположения устройств. Расчет сводится к определению напряжения в линии связи и линии питания в точках подключения к БУ. При расчетах следует учитывать суммарное сопротивление подводящих проводов, т.е. длину провода «туда-обратно».

Допускаются ответвления от линии связи, но при этом суммарная емкость проводов не должна превышать 0,1 мкФ.

Для надежной работы системы необходимо выполнение трех условий:

- максимальная длина линии связи не должна превышать 100м;
- напряжение на входе БУ не должно быть менее заданного в ТО на БУ с учетом сопротивления подводящих проводов, токов потребления и минимального напряжения источника питания;
- падение напряжения в линии связи не должно превышать 4В, то есть при минимальном напряжении питания линии на выходе сетевого контроллера, равном 11В, напряжение на самом дальнем конце линии связи было не менее 7В.

Примечание: после проведения монтажа системы рекомендуется убедиться, что напряжение питания на входе любого БУ не менее оговоренного в ТО на устройство.

Внимание. При размещении БУ вне здания необходимо использовать грозозащиту линий связи и питания (устройства SP01-24/0.13 и SP01-24/1.5).

- 4.4. Рекомендуемые типы кабелей
 - для монтажа линии связи и питания КСПВ, КСВВ;
 - для монтажа линии Ethernet UTP 4x2x0.52 кат.5.

Например, для линии связи в худшем случае, когда все 8 БУ882 расположены в конце линии длиной 100м и ток потребления от линии связи составляет 8х5мА = 40мА, допустимое сопротивление линии «туда-обратно» равно 4В/40мА = 100Ом. При использовании кабеля КСПВ с диаметром жилы 0.4мм длиной 100м суммарное сопротивление составит 29.6Ом, что меньше допустимых 100Ом. То есть, для прокладки линии связи подходит кабель с диаметром жилы 0.4мм и более.

4.5. Для заведения внутрь корпуса кабелей возможно использовать стандартные пластиковые или резиновые гермовводы требуемого диаметра.

Пластиковые гермовводы

Рис. 4.1

Резиновые гермовводы

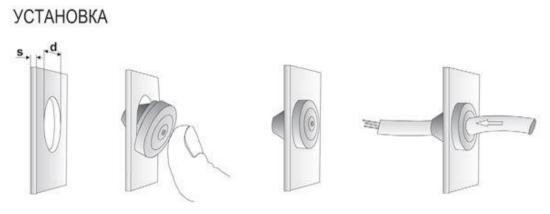


Рис. 4.2.

Внимание. Гермовводы в стандартный комплект поставки не входят, но могут быть поставлены по отдельному заказу.

5. Меры безопасности

- 5.1. При установке и эксплуатации сетевого контроллера следует руководствоваться «Правилами технической эксплуатации электроустановок потребителей» и «Правилами техники безопасности при эксплуатации электроустановок потребителей».
- 5.2. К работе с сетевым контроллером допускаются лица, изучившие настоящее техническое описание, а также прошедшие аттестацию по технике безопасности на 3 группу допуска при эксплуатации электроустановок, инструктаж по технике безопасности на рабочем месте.
- 5.3. Монтаж, установку и техническое обслуживание сетевого контроллера производить при выключенном источнике питания.
- 5.4. Запрещается устанавливать сетевой контроллер на токоведущих поверхностях и в сырых помещениях (с влажностью, превышающей 80%).
- 5.5. Запрещается использовать при чистке загрязненных поверхностей абразивные и химически активные вещества.
- 5.6. Выбор проводов и кабелей, способов их прокладки для организации линий связи и питания должен производиться в соответствии с требованиями ПУЭ, СНиП 3.05.06-85, ВСН 116-87, НПБ 88-2001 и технического описания «Прибор приемно-контрольный охранно-пожарный и контроля управления доступом "AS101"» (прибор ППКОП AS101).
- 5.7. Необходимо соблюдать полярность при подключении устройства.

6. Информация для заказа

БПОС101-0.25М-Офис – стандартная поставка контроллера без встроенного датчика вскрытия, реле и разъемов для подключения внешних датчиков и реле.

БПОС101-0.25М – контроллер со встроенным датчиком вскрытия, реле и разъемами для подключения внешних датчиков и реле.